International Platform of Registered Systematic Review and Meta-analysis Protocols

INPLASY

INPLASY202550015 doi: 10.37766/inplasy2025.5.0015 Received: 9 May 2025

Published: 9 May 2025

Corresponding author: Ravinder Saini

navinuer Saini

rsaini@kku.edu.sa

Author Affiliation: King Khalid University.

How efficient are 3D-Printed Bone substitutes in Maxillofacial Reconstruction

Saini, R; Ibrahim, R; Ukshah, AM; Heboyan, A.

ADMINISTRATIVE INFORMATION

Support - King Khalid University.

Review Stage at time of this submission - Completed but not published.

Conflicts of interest - None declared.

INPLASY registration number: INPLASY202550015

Amendments - This protocol was registered with the International Platform of Registered Systematic Review and Meta-Analysis Protocols (INPLASY) on 9 May 2025 and was last updated on 9 May 2025.

INTRODUCTION

R eview question / Objective To evaluate the clinical efficacy of 3D-printed bone substitutes versus traditional grafting in maxillofacial reconstruction.

Rationale 3D printing offers personalized solutions but lacks comprehensive meta-analytic validation. Traditional methods face limitations like donor site morbidity.

Condition being studied Maxillofacial/craniofacial defects from trauma, tumors, congenital anomalies, or infections requiring reconstruction.

METHODS

Search strategy Systematic search of PubMed, Scopus, Cochrane Library using terms 3D printing, bone substitutes, and maxillofacial surgery, targeting RCTs and cohort studies. **Participant or population** Patients undergoing maxillofacial/craniofacial reconstruction.

Intervention 3D-printed bone substitutes.

Comparator Traditional substitutes.

Study designs to be included RCTs and cohort studies with comparative designs.

Eligibility criteria English studies on humans; excluded animal studies, reviews, and non-comparative designs.

Information sources PubMed, Scopus, Cochrane Library, Web of Science, Elsevier.

Main outcome(s) Bone regeneration volume, surgical precision, operative duration.

Additional outcome(s) Cost-effectiveness, complications, intraoperative metrics, and implant success.

Data management PRISMA-guided extraction into Excel by two reviewers; disputes resolved by a third.

Quality assessment / Risk of bias analysis RoB2 for RCTs, ROBINS-I for cohort studies; visualized via Robvis.

Strategy of data synthesis Meta-analysis done by using SMD/MD; heterogeneity assessed.

Subgroup analysis Stratified by study design.

Sensitivity analysis Trim-and-Fill for publication bias; exclusion of high-bias studies.

Language restriction Only articles published in English.

Country(ies) involved Saudi Arabia, India.

Other relevant information Publication bias assessed via Begg's/Egger's tests.

Keywords 3D-printed bone substitute, maxillofacial reconstruction, bone regeneration, surgical deviation, meta-analysis.

Dissemination plans Article to be published in Peer-reviewed journals, conference presentations, and clinical guideline integration.

Contributions of each author

Author 1 - Ravinder Saini - conceptualization, Methodology, Study design, Investigations. Email: rsaini@kku.edu.sa Author 2 - Rayan Ibrahim - Visualization, Writing original draft, Supervision. Statistical analysis. Email: rihasan@kku.edu.sa Author 3 - Abdul Majid Ukshah - Funding Acquisition, Project administration. Email: okshah@kku.edu.sa Author 4 - Artak Heboyan - Publication, funding acquisition. Email: heboyan.artak@gmail.com