INPLASY PROTOCOL

To cite: de Bartolomeis et al. Canonical and non-canonical antipsychotics' molecular effects of present and next generation molecules on dopamine: translational highlights for treatment response and treatment-resistant schizophrenia. Inplasy protocol 202310079. doi: 10.37766/inplasy2023.1.0079

Received: 25 January 2023

Published: 25 January 2023

Corresponding author: Andrea de Bartolomeis

adebarto@unina.it

Support: This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Review Stage at time of this submission: Data analysis.

Conflicts of interest:

None declared.

Canonical and non-canonical antipsychotics' molecular effects of present and next generation molecules on dopamine: translational highlights for treatment response and treatment-resistant schizophrenia

de Bartolomeis, A¹; Ciccarelli, M²; De Simone, G³; Mazza, B⁴; Barone, A⁵; Vellucci, L⁶.

Review question / Objective: We aimed to provide a critical appraisal of canonical and non-canonical antipsychotics' molecular effects of present and next generation molecules by focusing on clinical implications for treatment responsiveness and resistance.

Condition being studied: We focused on animal models as well as human studies employing antipsychotic administration and exploring putative canonical and non-canonical mechanisms of action and the impact on treatment response or resistance.

INPLASY registration number: This protocol was registered with the International Platform of Registered Systematic Review and Meta-Analysis Protocols (INPLASY) on 25 January 2023 and was last updated on 25 January 2023 (registration number INPLASY202310079).

INTRODUCTION

Review question / Objective: We aimed to provide a critical appraisal of canonical and non-canonical antipsychotics' molecular effects of present and next generation molecules by focusing on clinical implications for treatment responsiveness and resistance.

Condition being studied: We focused on animal models as well as human studies employing antipsychotic administration and exploring putative canonical and noncanonical mechanisms of action and the impact on treatment response or resistance.

METHODS

Participant or population: Animals and humans.

Intervention: Administration of present and next generation molecules with antipsychotic effects.

Comparator: Administration of vehicle in animals or placebo in humans.

Study designs to be included: We included preclinical studies as well as clinical trials and observational studies conducted in humans and reviews on the topic.

Eligibility criteria: We considered eligible for the study: English-written in vitro or in vivo, both in animal models or humans articles, published in peer-reviewed journals without any time restriction.

Information sources: The search was carried out on three different databases (EMBASE, Scopus, and PubMed). Additional documents were obtained by hand-searching the reference lists of enclosed items.

Main outcome(s): Impact of antipsychotics on molecular components of different neurotransmitter systems, intracellular pathways, and postsynaptic density proteins as well as clinical measures of responsiveness and resistance to different molecules.

Quality assessment / Risk of bias analysis: Not applicable.

Strategy of data synthesis: Not applicable.

Subgroup analysis: Not applicable.

Sensitivity analysis: Not applicable.

Country(ies) involved: Italy.

Keywords: treatment-resistant schizophrenia; antipsychotic; postsynaptic density; dopamine; glutamate; synaptopathy.

Contributions of each author:

Author 1 - Andrea de Bartolomeis.

Author 2 - Mariateresa Ciccarelli.

Author 3 - Giuseppe De Simone.

Author 4 - Benedetta Mazza.

Author 5 - Annarita Barone.

Author 6 - Licia Vellucci.

Author Affiliation: Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Odontostomatology, University Medical School of Naples "Federico II", Naples, Italy.