INTRODUCTION

Review question / Objective: This meta-analysis aims to provide evidence-based medical evidence for penehyclidine as an anticholinergic antidote to completely replace atropine in acute organophosphorus pesticide poisoning.

Condition being studied: There is no evidence-based medical evidence for penehyclidine as an anticholinergic antidote to completely replace atropine in acute organophosphorus pesticide poisoning.

Review question / Objective: This meta-analysis aims to provide evidence-based medical evidence for penehyclidine as an anticholinergic antidote to completely replace atropine in acute organophosphorus pesticide poisoning.

Condition being studied: There is no evidence-based medical evidence for penehyclidine as an anticholinergic antidote to completely replace atropine in acute organophosphorus pesticide poisoning.

INPLASY PROTOCOL

To cite: Zeng et al. To explore the possibility of penehyclidine completely replacing atropine as an anticholinergic antidote in acute organophosphorus pesticide poisoning: a meta-analysis. Inplasy protocol 202230133. doi: 10.37766/inplasy2022.3.0133

Received: 23 March 2022
Published: 23 March 2022

Corresponding author: Siyao Zeng
357893553@qq.com

Author Affiliation:
Ningxia Medical University

Support: Ningxia Medical University.

Review Stage at time of this submission: Data extraction.

Conflicts of interest: None declared.

To explore the possibility of penehyclidine completely replacing atropine as an anticholinergic antidote in acute organophosphorus pesticide poisoning: a meta-analysis

Zeng, SY1; Ma, L2; Yang, LS3; Hu, XD4; Wang, C5; Guo, XX6; Li, Y7; Gou, Y8; Zhang, Y9; Li, SM10; Zhang, ST11; Wu, XX12; Li, MH13; Lei, J14; Li, BQ15; Bi, CF16; Ma, LK17; Luo, QP18.

Review question / Objective: This meta-analysis aims to provide evidence-based medical evidence for penehyclidine as an anticholinergic antidote to completely replace atropine in acute organophosphorus pesticide poisoning.

Condition being studied: There is no evidence-based medical evidence for penehyclidine as an anticholinergic antidote to completely replace atropine in acute organophosphorus pesticide poisoning.

Information sources: The Cochrane, ProQuest, Web of science, PubMed, Scopus, EMbase, Ovid, Chinese National Knowledge Infrastructure (CNKI), Chinese Biomedical literature (CBM), WanFang, Weipu (VIP), Duxiu, Chinese clinical trial Registry and Clinical Trials.gov databases.

INPLASY registration number: This protocol was registered with the International Platform of Registered Systematic Review and Meta-Analysis Protocols (INPLASY) on 23 March 2022 and was last updated on 24 March 2022 (registration number INPLASY202230133).
antidote to completely replace atropine in acute organophosphorus pesticide poisoning.

METHODS

Participant or population: Acute organophosphorus pesticide poisoning.

Intervention: Penehyclidine.

Comparator: Atropine.

Study designs to be included: Randomized controlled trial.

Eligibility criteria: Articles were included if they met all of the following criteria: 1) Randomized controlled study (RCT) 2) The study population is patients with acute organophosphorus pesticide poisoning, including living poisoning, use poisoning and production poisoning. 3) In the study, penehyclidine was used as the anticholinergic antidote in the experimental group and atropine was used as the anticholinergic antidote in the control group. Other general first aid measures of the experimental group and the control group are the same. 4) Articles report one or more of the following: (i) cure rate, (ii) mortality rate, (iii) hospitalization time, (iv) incidence of complications, including delayed polyneuropathy, intermediate syndrome, rebound, and respiratory failure, and (v) occurrence of adverse reactions, including blurred vision, thirst, urinary retention, tachycardia, fever, restlessness, and disturbance of consciousness, and (vi) occurrence of adverse reactions, including blurred vision, thirst, urinary retention, tachycardia, fever, restlessness, and disturbance of consciousness, and (vii) occurrence of adverse reactions, including blurred vision, thirst, urinary retention, tachycardia, fever, restlessness, and disturbance of consciousness.

Information sources: The Cochrane, ProQuest, Web of science, PubMed, Scopus, EMBase, Ovid, Chinese National Knowledge Infrastructure (CNKI), Chinese Biomedical literature (CBM), WanFang, Weipu (VIP), Duxiu, Chinese clinical trial Registry and Clinical Trials.gov databases.

Main outcome(s): Cure rate, mortality rate, hospitalization time.

Additional outcome(s): Incidence of complications, including delayed polyneuropathy, intermediate syndrome, rebound, and respiratory failure, and occurrence of adverse reactions, including blurred vision, thirst, urinary retention, tachycardia, fever, restlessness, and disturbance of consciousness, and disappearance time of clinical symptoms, including disappearance time of muscarinic symptoms, disappearance time of nicotinic symptoms, and disappearance time of central nervous system symptoms, and cholinesterase level recovery time, coma time and mechanical ventilation time.

Quality assessment / Risk of bias analysis: Cochrane collaboration tool.

Strategy of data synthesis: We used the RevMan software (version 5.3) provided by the Cochrane Collaboration and Stata (version 14 and 16) for data analysis. Dichotomous variable was presented as Risk ratios (RR). Continuous outcomes were presented as the mean difference and with a 95% confidence interval (CI) rate.

Subgroup analysis: Subgroup analysis according to the unit of the outcomes, such as days, hours, minutes.

Sensitivity analysis: After deleting any one of the documents, merge them again. If the effect size is not much different, then pass the sensitivity analysis.

Articles are not available. 6) The content of the articles are not rigorous. For example, the statistical results have no p value. 7) The articles are reviews or meta-analyses. 8) The data in the articles are duplicated or there is no data in the articles.
Language: Chinese and English.

Country(ies) involved: China.

Keywords: acute organophosphorus pesticide poisoning, penehyclidine, atropine, meta-analysis.

Contributions of each author:
Author 1 - Siyao Zeng - topic selection of meta-analysis, document retrieval, literature screening, data extraction, quality assessment, statistical analysis and writing.
Email: 357893553@qq.com
Author 2 - Lei Ma - statistical analysis, review and revise the manuscript.
Email: 13895306161@163.com
Author 3 - Lishan Yang - review and revise the manuscript.
Email: nyfyys@126.com
Author 4 - Xiaodong Hu - quality assessment.
Email: 443535136@qq.com
Author 5 - Cheng Wang - quality assessment.
Email: 1761691737@qq.com
Author 6 - Xinxin Guo - quality assessment.
Email: 627257871@qq.com
Author 7 - Yi Li - document retrieval.
Email: 1966269327@qq.com
Author 8 - Yi Gou - document retrieval.
Email: 1621878341@qq.com
Author 9 - Yao Zhang - literature screening.
Email: 749869321@qq.com
Author 10 - Shengming Li - literature screening.
Email: 2458744456@qq.com
Author 11 - Shaotong Zhang - data extraction.
Email: zhangshaotong@nxmu.edu.cn
Author 12 - Xiaoxuan Wu - data extraction.
Email: 928631994@qq.com
Author 13 - Meihong Li - data extraction.
Email: 1052693775@qq.com
Author 14 - Jing Lei - data extraction.
Email: 979574132@qq.com
Author 15 - Bingqian Li - data verification.
Email: 1551915280@qq.com
Author 16 - Chengfei Bi - data verification.
Email: bcf202103082021@163.com
Author 17 - Like Ma - data verification.
Email: 1245173077@qq.com

Email: 983978659@qq.com