INPLASY PROTOCOL

To cite: Zhao et al. A metaanalysis of the effects of vibration training on muscle strength, muscle mass and physical function in elderly with muscle attenuation syndrome. Inplasy protocol 202170014. doi: 10.37766/inplasy2021.7.0014

Received: 05 July 2021

Published: 05 July 2021

Corresponding author: Xing Wang

1519785082@qq.com

Author Affiliation: Shanghai University of Sport.

Support: 11DZ2261100.

Review Stage at time of this submission: Data analysis.

Conflicts of interest: None declared. A meta-analysis of the effects of vibration training on muscle strength, muscle mass and physical function in elderly with muscle attenuation syndrome

Zhao, QY¹; Sun, WX²;Yu, MX³; Wang, X⁴.

Review question / Objective: This systematic review and meta-analysis examines the effects of vibration therapy (including local vibration and whole body vibration) on improving muscle mass, muscle strength, and physical function in elderly people with sarcopenia.

Condition being studied: Muscle mass, muscle strength, and physical function in elderly people with sarcopenia.

Eligibility criteria: (1) Meet the EWGSOP/AWGS consensus or have clear and detailed diagnostic criteria for sarcopenia; (2) The research design is a randomized controlled trial study (RCT) or a quasi-trial study (CCT); (3) The intervention method is vibration training (Local vibration training or whole body vibration training). (4) Contain at least one of the following outcome indicators: muscle mass (such as limb skeletal muscle, skeletal muscle mass index and lean body mass), muscle strength (grip strength, knee extension/flexor strength), body function (such as walking speed, balance) Wait).

INPLASY registration number: This protocol was registered with the International Platform of Registered Systematic Review and Meta-Analysis Protocols (INPLASY) on 05 July 2021 and was last updated on 05 July 2021 (registration number INPLASY202170014).

INTRODUCTION

Review question / Objective: This systematic review and meta-analysis examines the effects of vibration therapy (including local vibration and whole body vibration) on improving muscle mass, muscle strength, and physical function in elderly people with sarcopenia. **Condition being studied:** Muscle mass, muscle strength, and physical function in elderly people with sarcopenia.

METHODS

Participant or population: Elderly with sarcopenia.

Intervention: Vibration training.

Comparator: Elderly with sarcopenia.

Study designs to be included: A computer search for randomized controlled trials of traditional Chinese exercise therapy in the databases of PubMed, The Cochrane Library, Web of Science, Embase, CNKI, CBM, Wanfang, and VIP.

Eligibility criteria: (1) Meet the EWGSOP/ AWGS consensus or have clear and detailed diagnostic criteria for sarcopenia; (2) The research design is a randomized controlled trial study (RCT) or a quasi-trial study (CCT); (3) The intervention method is vibration training (Local vibration training or whole body vibration training). (4) Contain at least one of the following outcome indicators: muscle mass (such as limb skeletal muscle, skeletal muscle mass index and lean body mass), muscle strength (grip strength, knee extension/ flexor strength), body function (such as walking speed, balance) Wait).

Information sources: A computer search for randomized controlled trials of traditional Chinese exercise therapy in the databases of PubMed, The Cochrane Library, Web of Science, Embase, CNKI, CBM, Wanfang, and VIP.

Main outcome(s): In the 7 confirmed studies, 5 of them were whole-body vibration training and 2 were local vibration therapy. A total of 196 sarcopenia patients participated. A meta-analysis of randomized controlled studies showed that systemic vibration therapy (SMD 0.69, 95% confidence interval 0.28 to 1.11, I2=0%, P=0.001) and local vibration therapy (SMD 3.78, 95% confidence interval 2.29 to 5.28, P< After 0.001), the muscle strength increased significantly. After the intervention, the physical performance measured by the sit-stand test and the timed rise-walk test was significantly improved (SMD -0.79, 95% confidence interval 1.21 to 0.37, I2=0%, P<0.001), SMD-0.83, 95% confidence The interval is 1.56 to 0.11, I2=6.4%, P=0.02).

Quality assessment / Risk of bias analysis: The RCT bias risk evaluation standard in the Cochrane Collaboration was used to evaluate the methodological quality of RCT in 6 domains, and the methodological quality of non-randomized controlled trials was evaluated using the MINORS tool. The two investigators independently conducted and reviewed each other. If there is a disagreement, the third investigator will discuss and decide whether to include.

Strategy of data synthesis: A computer search for randomized controlled trials of traditional Chinese exercise therapy in the databases of PubMed, The Cochrane Library, Web of Science, Embase, CNKI, CBM, Wanfang, and VIP.

Subgroup analysis: Perform subgroup analysis on muscle mass, muscle strength, and body function.

Sensitivity analysis: No sensitivity analysis was performed in this study.

Country(ies) involved: China.

Keywords: Sarcopenia, vibration training, muscle mass, muscle strength, body function.

Contributions of each author:

Author 1 - Qingying Zhao. Author 2 - Wenxin Sun. Email: 1305380127@qq.com Author 3 - Mingxuan Yu. Author 4 - Xing Wang. Email: 1519785082@qq.com